
Gradient Descent Optimization and Cost Function Visualization on a Noisy
Linear Dataset

Procedure

 1.Generate Sample Data
● Create a synthetic dataset using numpy's random functions. This dataset should

resemble a linear trend with some added noise.
Generate Data Points:

● Decide on the number of data points. Let's assume m = 100 for this
example.

● Decide on a linear function for the underlying trend, e.g., y = wx. Let's
take w = 4.

● Use numpy to generate random noise. The randn function is useful as it
returns samples from the "standard normal" distribution.

● Multiply the noise by a factor to decide its magnitude. For instance, a
factor of 1.5 will produce a moderate amount of noise.

● Create a linearly spaced set of x values.
● Calculate the corresponding y values based on the linear function and

add the noise.
● Plot the generated data to visualize the linear trend.

 2. Initialize Parameters for Gradient Descent
● Define the learning rate, number of iterations, and initial parameter values for the

linear regression model.
 3. Implement Gradient Descent

● Write a function named compute_cost that calculates the mean squared error of
your model given current parameter values.

● Write a function named gradient_descent that will adjust the parameter values
using the gradient descent algorithm.

● Using the above functions, compute the optimal parameters for the given
synthetic dataset.

 4. Visualize the Results
● Plot the linear regression line with the optimal parameters on the same graph as

your data points.
● Plot the cost history over iterations to understand the convergence of the gradient

descent algorithm.
 5. Discussion

● Discuss the importance of the learning rate. What happens if it's too high or too
low?

● How does the number of iterations affect the result? Is there a point where
increasing the number of iterations doesn't provide much benefit?


